

SLP Presentation

Introduction MHD equations

MHD wave

MHD shock

1D MHD

Shocks

1D Computationa MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

Solving Brio-Wu Shock Tube problem using Godunov Schemes Supervised Learning Project Presentation

Department of Aerospace Engineering Indian Institute of Technology Bombay

April 28, 2016

Presentation Outline

SLP Presentation

Introduction

- MHD equations MHD wav MHD sho
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

Introduction to Magnetohydrodynamics

- Magnetohydrodynamic Equations
- Magnetohydrodynamic waves
- 4 Magnetohydrodynamic shocks
 - 1D Mangnetohydrodynamics
- Shocks in 1D flow
- Computational Magnetohydrodynamics in One Dimension
- Godunov schemes for 1D MHD
- Interio Wu problem
- Results and Explanation
- Bibliography

What is Magnetohydrodynamics

SLP Presentation

Introduction

- MHD equation
- MHD waves
- MHD shocks
- 1D MHD
- Shocks
- 1D Computationa MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Study of electrically conducting fluids and their flow properties
- Combination of fluid mechanics and electromagnetism.
 Fluid Mech Navier Stokes
 Electromagnetism Maxwell's equations
- Primarily used to study plasma flow properties

What is Plasma

SLP Presentation

Introduction

- MHD equations
- MHD waves
- MHD shocks
- 1D MHD
- Shocks
- 1D Computationa MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Electrically conducting fluids that are neutral on macroscopic scale
- The number of electrons inside the Debye sphere is large
- Characteristic length scales should be much larger than the Debye length
- Average time between electron-neutral particle collisions be much larger than characteristic time scales of plasma flow.

Presentation Outline

SLP Presentation

Introduction to Magnetohydrodynamics

- Introduction
- MHD equations
- MHD wave
- MHD shock
- 1D MHD
- Shocks
- 1D Computational MHD
- Goduno\ Schemes
- Brio-Wu
- Results
- Bibliography

Magnetohydrodynamic Equations

- Magnetohydrodynamic waves
- 4 Magnetohydrodynamic shocks
 - 1D Mangnetohydrodynamics
- Shocks in 1D flow
- Computational Magnetohydrodynamics in One Dimension
- Godunov schemes for 1D MHD
- The Brio Wu problem
- Results and Explanation
- Bibliography

Magnetohydrodynamic equations

SLP Presentation

Introduction

MHD equations

MHD wave

MHD shocks

1D MHD

Shocks

1D Computational MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

Mass Conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{1}$$

• Momentum Conservation

$$\frac{\partial(\rho \mathbf{u})}{\partial t} = \rho_e \mathbf{E} + \mathbf{J} \times \mathbf{B} - \nabla \cdot (\rho I + \frac{1}{2} \mathbf{u} \mathbf{u}) + \psi \qquad (2)$$

$$\frac{1}{2}\rho \frac{Du^2}{Dt} + \rho \frac{De}{Dt} = -p\nabla \cdot \mathbf{u} + \mathbf{E}.\mathbf{J} + \phi$$
(3)

<ロ > < 回 > < 回 > < 直 > < 亘 > < 亘 > 三 の Q () 6/53

Maxwell's equations

SLP Presentation

Introduction

MHD equations

MHD wave

MHD shocks

1D MHD

Shocks

1D Computational MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

 $\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0 \tag{4}$

$$\frac{\partial \mathbf{D}}{\partial t} - \nabla \times \mathbf{H} + \mathbf{J} = 0 \tag{5}$$

$$\nabla \cdot \mathbf{D} = \rho_e \tag{6}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{7}$$

Supplemented by the equations

$$\frac{\partial \rho_{e}}{\partial t} + \nabla \cdot \mathbf{J} = 0 \tag{8}$$

$$\mathbf{J} = \sigma(\mathbf{E} + \mathbf{u} \times \mathbf{B}) \tag{9}$$

Ideal MHD Assumptions

SLP Presentation

Introduction

MHD equations

MHD wave

MHD shocks

1D MHD

Shocks

1D Computational MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

• Displacement Current is neglected in comparison to conduction current i.e

$$\frac{\epsilon(\partial \mathbf{E}/\partial t)_{max}}{\sigma \mathbf{E}_{max}} = \frac{\epsilon \omega}{\sigma} = 10^{-13}\omega \tag{10}$$

- Free charge density ($\rho_{e})$ is assumed to be zero.Thus-
 - Convection current is negligible in comparison to Conduction current

$$\frac{\rho_{e}\mathbf{u}}{\sigma E} \cong \frac{(\epsilon E/L)U}{\sigma \mathbf{E}} = \frac{\epsilon U}{\sigma L} \cong 10^{-8}$$
(11)

- Electrostatic forces much smaller than magnetic force $\frac{\rho_{e}\mathbf{E}}{\mathbf{J}\times\mathbf{B}} \cong \frac{\epsilon E^{2}}{\sigma L V B^{2}} \cong \frac{\epsilon V^{2} B^{2}}{\sigma L V B^{2}} = \frac{\epsilon V}{\sigma L} \cong 10^{-8}$ (12)
- Perfect electric conductor

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} \tag{13}$$

8 / 53

Ideal MHD Equations

SLP Presentation

Introduction

MHD equations

MHD wave

MHD shock

1D MHD

Shocks

1D Computational MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

 $\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{14}$

$$(\rho \mathbf{u})_t + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u} + P^* I - \frac{\mathbf{B} \mathbf{B}}{\mu} \right) = 0$$
 (15)

$$\mathbf{B}_t + \nabla \cdot (\mathbf{u}\mathbf{B} - \mathbf{B}\mathbf{u}) = 0 \tag{16}$$

$$E_t + \nabla \cdot \left[(E + P^*) \mathbf{u} - \frac{1}{\mu} (\mathbf{u} \cdot \mathbf{B}) \mathbf{B} \right] = 0$$
(17)

<ロ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Presentation Outline

SLP Presentation

- Introduction
- MHD equations
- MHD waves
- MHD shock
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Introduction to Magnetohydrodynamics
- Magnetohydrodynamic Equations
- 3 Magnetohydrodynamic waves
 - Magnetohydrodynamic shocks
 - 1D Mangnetohydrodynamics
 - Shocks in 1D flow
 - Computational Magnetohydrodynamics in One Dimension
 - Godunov schemes for 1D MHD
- Interio Wu problem
- Results and Explanation
- Bibliography

Magnetohydrodynamic waves

SLP Presentation

Introduction

MHD equations

MHD waves

MHD shocks

1D MHD

Shocks

1D Computational MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

Assuming that the variations in states are small from equilibrium value

$$\rho_t' + \rho_0 \nabla \cdot \mathbf{u}' = 0 \tag{18}$$

$$\rho_0 \mathbf{u}'_t + \mathbf{a}^2 \nabla \rho' - \frac{(\nabla \times \mathbf{b}) \times \mathbf{B}_0}{\mu} = 0$$
(19)

$$\mathbf{b}_t - \nabla \times (\mathbf{v}' \times \mathbf{B}_0) \tag{20}$$

$$\nabla \cdot \mathbf{b} = 0 \tag{21}$$

Note that we have used the approximation of isentropic process. Thus energy equation and momentum equation are the same. These equations yield 3 sets of wave solutions

Alfven Wave

- SLP Presentation
- Introduction
- MHD equations
- MHD waves
- MHD shocks
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- One set of wave solutions are transverse waves. These contribute to change in fluid velocity and magnetic field while the pressure and density do not vary
- Effect of external magnetic field is a combination of an isotropic pressure of $B^2/2\mu$ and a tension of B^2/μ
- Wave propagation possible through this magnetic tension

$$\mathbf{A} = \frac{\mathbf{B}}{\sqrt{\mu\rho}} \tag{22}$$

イロト イポト イヨト イヨト

Slow and Fast MHD waves

SLP Presentation

- Introduction
- MHD equations
- MHD waves
- MHD shocks
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- The other two sets of wave solutions are longitudnal in nature. These are collectively called as magneto-sonic or magneto-acoustic waves.
- Wave nature depends on direction of wave propagation
- If wave is propagating in the direction of magnetic field, then they behave like sound waves $(a = \sqrt{\gamma p/\rho})$
- Perpendicular to magnetic field, wave propagation also involves the compression and rarefaction of magnetic field lines along with pressure and density

$$V = \sqrt{a^2 + A^2} \tag{23}$$

• These two sets of wave solutions are called as Fast and Slow MHD waves

Slow and Fast MHD waves

SLP Presentation

- Introduction
- MHD equations
- MHD waves
- MHD shocks
- 1D MHD
- Shocks
- 1D Computationa MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

• System of coupled waves which vary the pressure, density, in-plane components of magnetic field etc.

$$c_{f,s}^2 = \frac{1}{2}[(a^2 + A^2)] \pm \sqrt{(a^2 + A^2)^2 - 4a^2A^2\cos^2\theta}] \quad (24)$$

- If Alfven wave is greater that the speed of sound, then , parallel to **B**, the fast wave combines with the transverse (alfven) wave and the slow wave behaves as a pure sound wave.
- If Alfven wave is lesser that the speed of sound, then , parallel to **B**, the slow wave combines with the transverse (alfven) wave and the fast wave behaves as a pure sound wave.
- Perpendicular to the magnetic field, only the fast MHD wave exists with propagation speed given in 23

Presentation Outline

SLP Presentation

- Introduction
- MHD equation
- MHD waves
- MHD shocks
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Introduction to Magnetohydrodynamics
- Magnetohydrodynamic Equations
- Magnetohydrodynamic waves
- Magnetohydrodynamic shocks
 - 1D Mangnetohydrodynamics
- Shocks in 1D flow
- Computational Magnetohydrodynamics in One Dimension
- Godunov schemes for 1D MHD
- 9 The Brio Wu problem
- Results and Explanation
- Bibliography

Magnetohydrodynamic Discontinuity

SLP Presentation

Introduction

MHD equation

MHD waves

MHD shocks

1D MHD

Shocks

1D Computational MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

- Smooth but rapid transitions through a region much smaller than the overall dimensions of interest.
- Equations below analysed from frame of shock
- For a ideal plasma(i.e perfect conductor and no excess charge and displacement current)

$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} \tag{25}$$

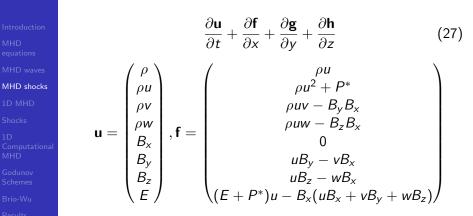
• Now from Poisson's equation $\nabla\cdot {\bf E}=0$ and the fact that $\nabla\times {\bf E}=0,$

$$abla \cdot (\mathbf{u} \times \mathbf{B}) = \nabla \times (\mathbf{u} \times \mathbf{B}) = 0$$
 (26)

• Thus the vector $(\mathbf{v}\times\mathbf{B})$ doesn't change across a discontinuity

SLP Presentation

Computational MHD



Results

Bibliography

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ の へ (*) 17/53

Computational MHD

Presentation MHD shocks

Bibliography

$$\mathbf{g} = \begin{pmatrix} \rho v \\ \rho vu - B_x B_y \\ \rho v^2 + P^* \\ \rho vw - B_z B_y \\ vB_x - vB_y \\ 0 \\ (E + P^*)v - B_y (uB_x + vB_y + wB_z) \end{pmatrix}$$
$$\mathbf{h} = \begin{pmatrix} \rho w \\ \rho wu - B_x B_z \\ \rho wv - B_z B_y \\ \rho w^2 + P^* \\ wB_x - uB_z \\ wB_y - vB_z \\ 0 \\ (E + P^*)w - B_z (uB_x + vB_y + wB_z) \end{pmatrix}$$

18 / 53

э

Presentation Outline

SLP Presentation

- Introduction
- MHD equatio
- MHD waves
- MHD shock
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- -----
- Drio-vvi
- Results
- Bibliography

- Introduction to Magnetohydrodynamics
- Magnetohydrodynamic Equations
- Magnetohydrodynamic waves
- Magnetohydrodynamic shocks
- 5 1D Mangnetohydrodynamics
 - Shocks in 1D flow
 - Computational Magnetohydrodynamics in One Dimension
 - Godunov schemes for 1D MHD
- 9 The Brio Wu problem
- Results and Explanation
- Bibliography

1D MHD

- SLP Presentation
- Introduction
- MHD equations
- MHD wave
- MHD shock
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

• Gradients are assumed to exist only along the x-direction

$$\frac{\partial b_x}{\partial x} = 0 \qquad (28) \qquad \frac{\partial b_x}{\partial t} = 0 \qquad (29)$$
$$\frac{\partial b_y}{\partial t} = B_{0_x} \frac{\partial u'_y}{\partial x} - B_{0_y} \frac{\partial u'_x}{\partial x} \qquad (30) \qquad \frac{\partial b_z}{\partial t} = B_{0_x} \frac{\partial u'_z}{\partial x} \qquad (31)$$
$$\frac{\partial \rho'}{\partial t} = -\rho_0 \frac{\partial u'_x}{\partial x} \qquad (32) \quad \frac{\partial u'_x}{\partial t} = -\frac{a^2}{\rho_0} \frac{\partial \rho'}{\partial x} - \frac{1}{\rho_0 \mu} B_{0_y} \frac{\partial b_y}{\partial x} \qquad (33)$$
$$\frac{\partial u'_y}{\partial t} = \frac{1}{\rho \mu} B_{0_x} \frac{\partial b_y}{\partial x} \qquad (34) \qquad \frac{\partial u'_z}{\partial t} = \frac{1}{\rho \mu} B_{0_x} \frac{\partial b_z}{\partial x} \qquad (35)$$

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ○ < ○ 20 / 53

Alfven wave

- SLP Presentation
- Introduction
- MHD equation
- MHD waves
- MHD shocks
- 1D MHD
- Shocks
- 1D Computationa MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- From equations 28 and 29, we see that $b_x = constant$
- Differentiate equation 31 w.r.t *t* and substitute equation 35. We get

$$\frac{\partial^2 b_z}{\partial t^2} = A_x^2 \frac{\partial^2 b_z}{\partial x^2} \tag{36}$$

where $A_x = \frac{B_{0_x}}{\sqrt{\rho_0 \mu}}$

• Similarly differentiate 35 w.r.t *t* and substitute using equation 31

$$\frac{\partial^2 u_z}{\partial t^2} = A_x^2 \frac{\partial^2 u_z}{\partial x^2} \tag{37}$$

Magneto-sonic waves

- SLP Presentation
- Introduction
- MHD equation
- MHD wave
- MHD shocks
- 1D MHD
- ${\sf Shocks}$
- 1D Computationa MHD
- Godunov Schemes
- Brio-Wu
- Results
- ${\sf Bibliography}$

• Differentiate equation 30 w.r.t t and substitute v'_y from equation 34 and v'_x from equation 33. We get

$$\frac{\partial^2 b_y}{\partial t^2} = \frac{B_0^2}{\rho_0 \mu} \frac{\partial^2 b_y}{\partial x^2} + \frac{a^2}{\rho_0} B_{0_y} \frac{\partial^2 \rho'}{\partial x^2}$$
(38)

• Differentiate equation 32 w.r.t t and substitute v'_x from equation 33. We get

$$\frac{\partial^2 \rho'}{\partial t^2} = a^2 \frac{\partial^2 \rho'}{\partial x^2} + \frac{B_{0_y}}{\mu} \frac{\partial^2 b_y}{\partial x^2}$$
(39)

Coupled equations

Magneto-sonic waves

SLP Presentation

Introduction

MHD equation

MHD waves

MHD shocks

1D MHD

Shocks

1D Computational MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

• Substitute
$$b_y = b_{0_y} e^{i(kx-\omega t)}$$
 and $\rho' = \rho'_0 e^{i(kx-\omega t)}$. We get

$$\left(c^2 - \frac{B_0^2}{\rho\mu}\right)b_{0_y} - \frac{a^2 B_{0_y}}{\rho_0}\rho_0' = 0$$
(40)

$$(c^{2} - a^{2})\rho_{0}' - \frac{B_{0_{y}}}{\mu}b_{0_{y}} = 0$$
(41)

where $\mathbf{c} = \omega \mathbf{k}/k^2$ or $c = \omega/k$

• Applying the condition for non-trivial solutions,

$$c_{f,s} = \frac{1}{2} (\sqrt{a^2 + 2aA_x + A^2} \pm \sqrt{a^2 - 2aA_x + A^2})$$
 (42)

◆□ → < □ → < 亘 → < 亘 → < 亘 → < 亘 → ○ Q (~ 23 / 53

Presentation Outline

SLP Presentation

- Introduction
- MHD equation
- MHD wave
- MHD shock
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Introduction to Magnetohydrodynamics
- Magnetohydrodynamic Equations
- Magnetohydrodynamic waves
- 4 Magnetohydrodynamic shocks
 - 1D Mangnetohydrodynamics
- 6 Shocks in 1D flow
 - Computational Magnetohydrodynamics in One Dimension
 - Godunov schemes for 1D MHD
- 9 The Brio Wu problem
- Results and Explanation
- Bibliography

MHD shock relations

SLP Presentation

Introduction

MHD equation

MHD wave

MHD shocks

1D MHD

Shocks

1D Computational MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

From the ideal MHD equations we get:

$$[\rho u] = 0 \qquad (43) \left[\rho u^2 + p + \frac{1}{2\mu} (B_y^2 + B_x^2) \right] = 0$$
(44)

$$\begin{bmatrix} \rho uv - \frac{B_x B_y}{\mu} \end{bmatrix} = 0 \quad (45) \quad \begin{bmatrix} \rho uw - \frac{B_x B_z}{\mu} \end{bmatrix} = 0 \quad (46)$$
$$\begin{bmatrix} uB_y - vB_x \end{bmatrix} = 0 \quad (47) \quad \begin{bmatrix} wB_x - uB_z \end{bmatrix} = 0 \quad (48)$$

$$\left[\rho u h_0 + \frac{u}{\mu} (B_y^2 + B_z^2) - \frac{B_x}{\mu} (v B_y + w B_z)\right] = 0 \qquad (49)$$

Rankine-Hugoniot Equation

SLP Presentation

Introduction

MHD

MHD shocks

1D MHD

Shocks

1D Computationa MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

• Rearranging equation 49 using equations 43, 45 and 46 to remove *u*, *v*, *w* terms, we get

$$[h] + \frac{1}{2}m^{2}[\tau^{2}] + \frac{1}{\mu}[\tau B_{t}^{2}] - \frac{1}{2m^{2}}\frac{B_{x}^{2}}{\mu^{2}}[B_{t}^{2}] = 0$$
 (50)

where $m = \rho u$ and $\tau = 1/\rho$

From equation 44,

$$m^{2} = \frac{p_{2} - p_{1} + \frac{1}{2\mu}(B_{t_{2}}^{2} - B_{t_{1}}^{2})}{\tau_{1} - \tau_{2}}$$
(51)

- From equations 45, 47 and equations 46, 48, $m^{2} = \frac{B_{x}^{2}}{\mu} \frac{[B_{y}]}{[\tau B_{y}]} \qquad (52) \qquad m^{2} = \frac{B_{x}^{2}}{\mu} \frac{[B_{z}]}{[\tau B_{z}]} \qquad (53)$ • Combining above equations and using $h = e + p/\rho$ $e_{2} - e_{1} + \frac{1}{2}(p_{1} + p_{2})(\tau_{2} - \tau_{1}) + \frac{1}{4\mu}((B_{z_{2}} - B_{z_{1}})^{2} + (B_{y_{2}} - B_{y_{1}})^{2})(\tau_{2} - \tau_{1}) = 0$ (54)
 - 26 / 53

Friedrichs' Shock equations

SLP Presentation

Introduction

MHD equation

MHD wave

MHD shocks

1D MHD

Shocks

1D Computational MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

Defining suitable average values, equations 43 to 49 can be written as:

$$m[\tau] - [u] = 0 \qquad (55)m[u] + [p] + \frac{1}{\mu}(\tilde{B}_{y}[B_{y}] + \tilde{B}_{z}[B_{z}]) = 0$$
(56)

$$m[v] - \frac{B_x}{\mu}[B_y] = 0$$
 (57) $m[w] - \frac{B_x}{\mu}[B_z] = 0$ (58)

$$m\tilde{\tau}[B_y] + \tilde{B_y}[u] - B_x[v] = 0 \quad m\tilde{\tau}[B_z] + \tilde{B_z}[u] - B_x[v] = 0$$
(59) (60)

<ロト < 部 > < 言 > < 言 > 言 の < C 27 / 53

Friedrichs' Shock equations

SLP Presentation

Introduction

MHD equation

MHD waves

MHD shocks

1D MHD

Shocks

1D Computational MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

- Above equations form a system of equations for variables
 [u], [v], [w], [B_y], [B_z], [τ]
- Solve for the non-triviality of these equations by setting the determinant as zero.
- It gives three solutions of m -

$$m_{A} = \frac{B_{x}}{\sqrt{\mu\tilde{\tau}}}$$
(61)
$$m_{f,s}^{2} = \frac{1}{\sqrt{2}} \left(\frac{\tilde{B}^{2}}{\mu\tilde{\tau}} - \frac{[p]}{[\tau]} \pm \sqrt{\frac{[p]^{2}}{[\tau]^{2}} + \frac{\tilde{B}^{2}}{\mu^{2}\tilde{\tau}^{2}} - \frac{2[p]}{[\tau]\tilde{\tau}} \frac{(\tilde{B}_{x}^{2} + \tilde{B}_{y}^{2} + \tilde{B}_{z}^{2})}{\mu}}{(62)} \right)$$
(61)

Friedrichs' Shock equations

 $[\tau] = -Cm\left(m^2\tilde{\tau} - \frac{B_x^2}{\mu}\right)\left(m^2\tilde{\tau} - \frac{\ddot{B}^2}{\mu}\right)$ (63) $[u] = -Cm^2 \left(m^2 \tilde{\tau} - \frac{B_x^2}{\mu} \right) \left(m^2 \tilde{\tau} - \frac{\tilde{B}^2}{\mu} \right)$ (64) $[v] = Cm^2 \left(\frac{1}{\mu}B_x \tilde{B}_y\right) \left(m^2 \tilde{\tau} - \frac{\tilde{B}^2}{\mu}\right)$ (65) $[w] = Cm^2 \left(\frac{1}{\mu}B_x \tilde{B}_z\right) \left(m^2 \tilde{\tau} - \frac{\tilde{B}^2}{\mu}\right)$ (66) $[B_y] = Cm^3 \tilde{B}_y \left(m^2 \tilde{\tau} - \frac{\tilde{B}^2}{\mu} \right)$ (67) $[B_z] = Cm^3 \tilde{B_z} \left(m^2 \tilde{\tau} - \frac{\tilde{B^2}}{\mu} \right)$ (68)29 / 53

SLP Presentation

Introduction

MHD equation

MHD wave

MHD shocks

1D MHD

Shocks

1D Computationa MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

Fast and Slow shocks

SLP Presentation

Introduction

MHD equation

MHD waves

MHD shocks

1D MHD

Shocks

1D Computational MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

• On solving the Friedrichs' Shock equations, one set of equations can be shown to satisfy

$$m^{2} = \frac{(-[p]/[\tau])(m^{2} - B_{x}^{2}/\mu\tilde{\tau})}{m^{2} - \tilde{B}^{2}/\mu\tilde{\tau}}$$
(69)

$$m_s^2 < rac{B_x^2}{\mu ilde{ au}}$$
 (70) $m_f^2 > rac{ ilde{B}^2}{\mu ilde{ au}} > rac{B_x^2}{\mu ilde{ au}}$ (71)

• The fast shock velocity of a weak fast shock depends on the orientation of the magnetic field too while that of a weak shock wave depends on the normal component alone

$$[B_t^2] = -\frac{2m^2[\tau]\tilde{B_t}^2}{m^2\tilde{\tau} - B_x^2/\mu}$$
(72)

- Thus |B_t| increases across a fast shock and decreases across a slow shock
 - 30 / 53

Fast and Slow Shock

SLP Presentation

Introduction

- MHD equatior
- MHD waves
- MHD shocks
- 1D MHD

Shocks

- 1D Computationa MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Switch-off shock Slow shock for which B_{t_2} is zero but $B_{t_1} \neq 0$
- Switch on shock Fast shock with $B_{t_2} > 0$ even though $B_{t_1} = 0$
- Two dimensional shocks i.e $B_{t_1} || B_{t_2}$ so we can assume that the $B_{z_1} = B_{z_2}$

Alfven Shocks

SLP Presentation

Introduction

- MHD equation
- MHD waves
- MHD shocks
- 1D MHD

Shocks

- 1D Computationa MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Density doesn't change i.e $[\rho] = 0 \implies [e] = 0 \implies [S] = 0$
- Only tangential magnetic field and tangential velocity changes across shock
- From 64, we see that $[B_t^2] = 0$
- Rotation of tangential component of magnetic field in the plane of the shock

Shocks in perfect gases

SLP Presentation

Introduction

MHD equation

MHD wave

MHD shocks

1D MHD

Shocks

1D Computationa MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

$$\rho_1 V_1^2 + p_1 + \frac{B_{y_1}^2}{2\mu} = \rho_1 V_1 u_2 + p_2 + \frac{B_{y_2}^2}{\mu}$$
(73)
$$\frac{B_x}{\mu} B_{y_1} = \frac{B_x}{\mu} B_{y_2} - \rho_1 V_1 v_2$$
(74)

$$V_1 B_{y_1} = u_2 B_{y_2} - B_x v_2 \tag{75}$$

$$V_1\left(\frac{\gamma p_1}{\gamma - 1} + \frac{\rho_1 V_1^2}{2} + \frac{B_{y_1}^2}{\mu}\right) = \frac{\gamma}{\gamma - 1} p_2 u_2 + \frac{\rho_1 V_1}{2} (u_2^2 + v_2^2) + \frac{V_1 B_{y_1}}{\mu}$$
(76)

۱

Shocks in perfect gas

- SLP Presentation
- Introduction
- MHD equation
- MHD wave
- MHD shocks
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Seven types of shocks
- Alfven Shock: $[B_y^2] = 0$
- Fast Shocks: $[B_y^2] > 0$
 - Type 1: $q \geq 1 rac{\gamma}{\gamma-1} sin^2 heta$
 - Type 2: $q < 1 rac{\gamma}{\gamma-1} sin^2 heta$
- Slow Shocks: $[B_y^2] < 0$
 - Type 1: $q \ge 1 \gamma \sin^2 \theta$ • Type 2: $q < 1 - \gamma \sin^2 \theta$

イロト イポト イヨト イヨト

34 / 53

where
$$q=rac{\gamma p_1 \mu}{B_1^2}$$

Presentation Outline

SLP Presentation

- Introduction
- MHD equation
- MHD wave
- MHD shock
- 1D MHD
- Shocks

1D Computational MHD

- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Introduction to Magnetohydrodynamics
- Magnetohydrodynamic Equations
- Magnetohydrodynamic waves
- 4 Magnetohydrodynamic shocks
 - 1D Mangnetohydrodynamics
 - Shocks in 1D flow
- Computational Magnetohydrodynamics in One Dimension
 - Godunov schemes for 1D MHD
- 9 The Brio Wu problem
- Results and Explanation
- Bibliography

SLP Presentation

Comput MHD

1D computational MHD

• Assuming that the gradients exist only in x-direction

$$\mathbf{u}_{t} + \mathbf{f}(\mathbf{u}_{x}) = 0$$
(77)

$$\mathbf{u}_{t} + \mathbf{f}(\mathbf{u}_{x}) = 0$$
(77)

$$\mu_{t} + \mathbf{f}(\mathbf{u}_{x}) = 0$$
(77)

$$\rho_{u} + \rho_{u} + \rho_{u}$$

< □ > < ⑦ > < ≧ > < ≧ > < ≧ > ≧ 少へ() 36/53

1D MHD Eigenstructure

SLP Presentation

- Introduction
- MHD equation
- MHD waves
- MHD shocks
- 1D MHD
- Shocks

1D Computational MHD

- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- $\lambda_e = u$
- $\lambda_a^{\pm} = u \pm c_a$
- $\lambda_f^{\pm} = u \pm c_f$
- $\lambda_s^{\pm} = u \pm c_s$
- Eigenvectors proposed by Jeffrey and Tanuiti, become singular at points where two or more eigenvalue coincide
- Eigenvalues were re-normalised by Brio and Wu to ensure that they are well defined at all points. But they fail at the triple umbilic point
- In this project Brio-Wu eigenvectors have been used

1D MHD Wave structure

SLP Presentation

Introduction

- MHD equation
- MHD waves
- MHD shocks
- 1D MHD
- Shocks

1D Computational MHD

- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Equations are non convex in structure leading to intermediate shocks
- These non evolutionary discontinuities are solutions of MHD Rankine Hugoniot Jump conditions
- Initially, all non evolutionary shocks were rejected, but they were observed in the Brio-Wu Shock Tube solution and also in Voyager I data
- The exact wave structure is still under debate

- Introduction
- MHD equation
- MHD wave
- MHD shock
- 1D MHD
- Shocks
- 1D Computationa MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Introduction to Magnetohydrodynamics
- Magnetohydrodynamic Equations
- Magnetohydrodynamic waves
- 4 Magnetohydrodynamic shocks
 - 1D Mangnetohydrodynamics
- 6 Shocks in 1D flow
 - Computational Magnetohydrodynamics in One Dimension
- 8 Godunov schemes for 1D MHD
 - D The Brio Wu problem
 - Results and Explanation
- Bibliography

Godunov schemes for 1D MHD

SLP Presentation

- Introduction
- MHD
- MHD wave
- MHD shocks
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

• Assumes piecewise constant distribution of form

$$\mathbf{U}_{i}^{n} = \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \tilde{\mathbf{U}}(x, t^{n}) dx$$
(78)

Conservative law given by

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t}{\Delta x} \left[\mathbf{F}_{i+1/2}^{n} - \mathbf{F}_{1-1/2}^{n} \right]$$
(79)

$$\mathbf{F}_{i+1/2}^{n} = \mathbf{F}(\mathbf{U}_{i+1/2}^{n})$$
(80)

- $\mathbf{U}_{i+1/2}^n$ estimated by solving local Riemann problem i.e $\mathbf{U}_{1+1/2}^n = RP[\mathbf{U}_i^n, \mathbf{U}_{i+1}^n]$
- Solve two Riemann problems RP[Uⁿ_{i-1}, Uⁿ_i], RP[Uⁿ_i, Uⁿ_{i+1}] for conservative law above, take integral average for cell *i* of the combined solutions and assign it to Uⁿ⁺¹_i

SI P

Presentation

Godunov

Schemes

Ē

1

Linear Riemann Solver

Roe averaging has been used to estimate $\mathbf{u}_{i+1/2}^n$

$$\bar{\rho} = \sqrt{\rho_L \rho_R} \qquad (81) \quad \bar{\mathbf{u}} = \frac{\sqrt{\rho_L} \mathbf{u}_L + \sqrt{\rho_R} \mathbf{u}_R}{\sqrt{\rho_L} + \sqrt{\rho_R}} \quad (82)$$

$$=\frac{\sqrt{\rho_L}\mathbf{B}_L+\sqrt{\rho_R}\mathbf{B}_R}{\sqrt{\rho_L}+\sqrt{\rho_R}} \quad (83) \quad \bar{H}=\frac{\sqrt{\rho_L}H_L+\sqrt{\rho_R}H_R}{\sqrt{\rho_L}+\sqrt{\rho_R}} \quad (84)$$

- Rarefaction waves are assumed to be shocks
- Now evaluate Jacobian at the row avaeraged values
- Diagonalize the Jacobian ${\pmb\Lambda}={\pmb {\sf K}}^{-1}{\pmb {\sf A}}{\pmb {\sf K}}$ and consider ${\pmb {\sf V}}={\pmb {\sf K}}^{-1}{\pmb {\sf U}}$
- Now calculate $V_{i+1/2}$ using the fact that only one component of V will change across an eigen value wave

•
$$U_{i+1/2} = KV_{i+1/2}$$

- Introduction
- MHD equation
- MHD wave
- MHD shock
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Introduction to Magnetohydrodynamics
- Magnetohydrodynamic Equations
- Magnetohydrodynamic waves
- 4 Magnetohydrodynamic shocks
 - 1D Mangnetohydrodynamics
- 6 Shocks in 1D flow
 - Computational Magnetohydrodynamics in One Dimension
 - Godunov schemes for 1D MHD
- The Brio Wu problem
 - Results and Explanation
- 11 Bibliography

Brio-Wu Shock Tube

SLP Presentation

Introduction

- MHD equation
- MHD waves
- MHD shocks
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes

Brio-Wu

- Results
- Bibliography

- Extension of Sod's shock tube problem in MHD
- Anti-parallel magnetic field components on either side of initial discontinuity
- Consists of two fast refractions, two slow shocks and a contact discontinuity

$$\mathbf{w}_{\mathsf{L}} = [1, 0, 0, 0, 1, 0, 1] \tag{85}$$

$$\mathbf{w}_{\mathbf{R}} = [0.125, 0, 0, 0, -1, 0, 1] \tag{86}$$

- Introduction
- MHD equatior
- MHD wave
- MHD shock
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

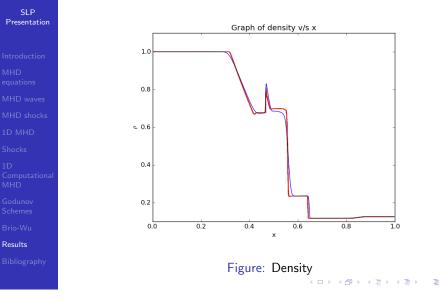
- Introduction to Magnetohydrodynamics
- Magnetohydrodynamic Equations
- Magnetohydrodynamic waves
- 4 Magnetohydrodynamic shocks
 - 1D Mangnetohydrodynamics
- Shocks in 1D flow
- Computational Magnetohydrodynamics in One Dimension
- Godunov schemes for 1D MHD
- The Brio Wu problem
- 10 Results and Explanation
 - Bibliography

Simulation set up

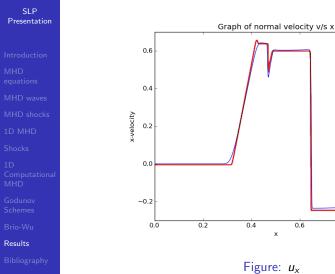
- Introduction
- MHD equation
- MHD waves
- MHD shocks
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Domain of x from (-1,1)
- $\Delta t = 0.2$
- CFL number assumed to be constant = 0.475
- Results have been properly validated

Density plot



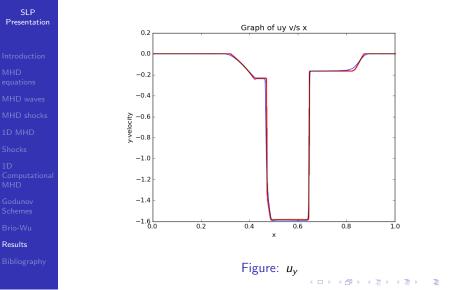
X-velocity plot



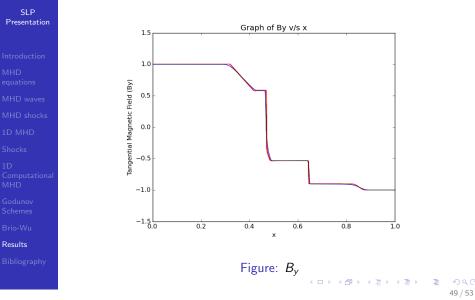
1.0

0.8

Y-velocity plot



Tangential magnetic field



Explanations

SLP Presentation

Introduction

MHD equation:

MHD waves

MHD shocks

1D MHD

Shocks

1D Computational MHD

Godunov Schemes

Brio-Wu

Results

Bibliography

There are 4 waves formed in the shock tube. From left to right, they can be listed as follows:

- Fast rarefaction waves
- Slow Compound waves
- Contact discontinuity Not a wave as pressure remains constant

イロト イポト イヨト イヨト

-

- Slow shock
- Fast rarefaction wave

Conclusion

- Introduction
- MHD equation
- MHD waves
- MHD shocks
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- The possibility of compound wave/intermediate shocks was shown
- The variation of ρ, u, B, and p were shown to follow the Rankine - Hugonoit Jump Conditions
- The nature of these waves is very different from the normal hydrodynamic case owing to the non convexity of the equations

- Introduction
- MHD equatior
- MHD wave
- MHD shock
- 1D MHD
- Shocks
- 1D Computational MHD
- Godunov Schemes
- Brio-Wu
- Results
- Bibliography

- Introduction to Magnetohydrodynamics
- Magnetohydrodynamic Equations
- Magnetohydrodynamic waves
- 4 Magnetohydrodynamic shocks
 - 1D Mangnetohydrodynamics
- Shocks in 1D flow
- Computational Magnetohydrodynamics in One Dimension
- Godunov schemes for 1D MHD
- The Brio Wu problem
 - Results and Explanation
- 1 Bibliography

Bibliography

SLP
Presentation
MHD
Bibliography